


MORPHOLOGY2

FIRST YEAR

2023/2024.

THE CURRICULUM OF THE STUDY PROGRAMME

Teachers:

	Name and surname	Email	title
1.	Biljana Ljujic	bljujic74@gmail.com	Full Professor
2.	Olivera Milosevic-Djordjevic	olivera@kg.ac.rs	Full Professor
3.	Vladislav Volarevic	drvolarevic@yahoo.com	Full Professor
4.	Danijela Todorovic	dtodorovic@medf.kg.ac.rs	Associate Professor
5.	Marina Gazdic Jankovic	marinagazdic87@gmail.com	Assistant Professor
6.	Danijela Cvetkovic	c_danijela@yahoo.com	Assistant Professor
7.	Nikolina Kastratovic	n_kastratovic@outlook.com	Teaching Assistant
8.	Dragana Papic	drmiloradovic7@gmail.com	Teaching Assistant
9.	Dragica Pavlovic	dragica.miloradovic8@gmail.c	Teaching Assistant

Course structure:

Module	Module title	Week	Theoretical classes per week	Practical classes per week	Teacher in charge:
1	Organization of the human genome	5	2	2	Marina Gazdic Jankovic
2	Significance of gene mutation and genetic determination of human traits	6	2	2	Vladislav Volarevic
3	Developmental genetics and population genetics	4	2	2	Marina Gazdic Jankovic
					Σ 30+30=60

Examination Methods:

By fulfilling the pre-exam obligations and taking the written/test exam, the student can achieve a maximum of 100 points.

The grade is equivalent to the number of points earned (see tables). Points are earned in two ways:

ACTIVITY DURING THE CLASSES:

In this way, the student earns up to 30 points, by answering 2 questions from that week's classes at the practical classes and, in accordance with the demonstrated knowledge, gaining from 0 - 2 points.

FINAL EXAM:

The student takes the final test during the exam period. The test includes 35 questions. Each question is worth 2 points. In this way, the student can acquire 70 points, according to the attached grading scheme.

Determination of final grade:

To pass the exam, the student must earn the minimum of 51 total points and to fulfill the following:

- 1. to earn more than 50% points on activity during classes
- 2. to earn more than 50% points on the final exam, which includes total teaching material.

Grading system

Final grade	Total number of points Points grade	Description
10	91 – 100	Excellent
9	81 – 90	Exceptionally good
8	71 – 80	Very good
7	61 – 70	Good
6	51 – 60	Passing
5	< 51	Falling

LITERATURE:

textbook	authors	publisher	library	reading room
Emery's elements of medical genetics	Peter D. Turnpenny and Sian Ellard	Elsevier. 15 th edition. 2017.	yes	yes

STUDY PROGRAM

THE MODULE 1: ORGANISATION OF HUMAN GENOME

Course unit 1 (1STWEEK):

EUKARYOTIC CHROMOSOMES		
lecture 1 class	practice 1 class	
Chemical composition of eukaryotic chromosome. DNA packaging Morphological features of chromosomes	Chemical composition of eukaryotic chromosome DNA packaging Morphological features of chromosomes Human karyotype Standardisation in human cytogenetics	
lecture 1 class	practice 1 class	
Human karyotype Standardisation in human cytogenetics	Student activity assessment	

Course unit 2 (2ndWEEK):

NUCLEAR AND MITOCHONDRIAL GENOMES

lecture 1 class	practice 1 class
The human nuclear genome: structure and organisation Eukaryotic gene structure Number and length of human nuclear genes Gene polymorphism	Human nuclear and mitochondrial genome Eukaryotic gene structure Number and length of human nuclear genes Gene polymorphism

lecture 1 class	practice 1 class
The mitochondrial genome: structure and organisation Genes on the mitochondrial DNA Maternal inheritance	Student activity assessment

Course unit 3 (3st WEEK):

GENETIC RECOMBINATION

lecture 1 class	practice 1 class
Genetic recombination. Recombination in viruses. Conjugation, transformation and transduction Genetic recombination in bacteria	Genetic linkage The mechanism of crossing-over Gene mapping- practice problems
lecture 1 class	practice 1 class
Genetic recombination in eukaryotes - crossing-over-mechanism, modification of crossing over frequency Crossing over and genetic mapping Interference and coincidence	Student activity assessment

Course unit 4 (4th WEEK):

GENETIC ENGINEERING - RECOMBINANT DNA TECHNOLOGY

lecture 1 class	practice 1 class
Clone and cloning Gene cloning -methods of recombinant DNA technology	Gene cloning - methods of recombinant DNA technology. Reproductive cloning. Therapeutic cloning. Recombinant DNA in medicine
lecture 1 class	practice 1 class
Reproductive cloning Therapeutic cloning Recombinant DNA in medicine	Student activity assessment

Course unit 5 (5th WEEK):

EPIGENETICS. STEM CELLS AND THEIR APPLICATIONS.

lecture 1	practice 1 class
class	
Introduction to epigenetics Biology of stem cells Types of stem cells Molecular mechanisms of pluripotency and reprogramming	Introduction to epigenetics Biology of stem cells Types of stem cells Molecular mechanisms of pluripotency and reprogramming Stem cells applications in regenerative medicine
lecture 1 class	practice 1 class
Stem cells applications in regenerative medicine	Student activity assessment

THE MODULE 2: THE SIGNIFICANCE OF GENE MUTATION AND GENETIC DETERMINATION OF HUMAN TRAITS

Course unit 6 (6th WEEK):

NUMERICAL CHROMOSOME ABERRATIONS

lecture 1 class	practice 1 class
Definition and mechanism of polyploidy	Polyploidy andaneuploidy Practice problems
lecture 1class	practice 1 class
Definition and mechanism of aneuploidy Types of aneuploidy Mixoploidy and chimerism	Student activity assessment

NUMERICAL AND STRUCTURAL CHROMOSOME ABERRATIONS

lecture 1 class	practice 1 class
Types and mechanism of chromosomal deletion Mechanism of chromosomal duplications Isochromosome and dicentric chromosome Types and mechanism of chromosomal inversion	Structural chromosome aberrations -deletion, duplications, inversion and translocations. Practice problems
lecture 1 class	practice 1 class
Types and mechanism of chromosomal translocations Differences between reciprocal translocations, Robertsonian translocations and insertions	Student activity assessment

Course unit 8 (8thWEEK):

CLINICAL FINDINGS IN CHROMOSOME ABERRATIONS

lecture 1 class	practice 1 class	
Sex chromosome aneuploidies: Turner syndrome, Klinefelter syndrome, Triple X syndrome and XYY syndrome Autosomal aneuploidies: Down's, Edwards' and Patau's syndromes	Clinical findings in chromosome aberrations.	
lecture 1 class	practice 1 class	
Chromosome deletion: Cri-Du-Chat syndrome, Wolf-Hirschhorn syndrome, malignant diseases. Turner syndrome caused by X chromosome deletion Syndromes caused by chromosomal translocations Chromosomal aberrations-the cause of spontaneous abortions	Student activity assessment	

Course unit 9 (9thWEEK):

lecture 1 class Gene mutation: definition and types (somatic and germline mutations, spontaneous and induced mutations, micro and macro mutations) Point mutation – substitution (missense, nonsense, silent and neutral mutations), frameshift mutations (insertions and deletions) Dynamic mutation Spontaneous mutation rates practice 1 class Mechanisms of gene mutation

GENE MUTATIONS

lecture 1 class	practice 1 class
DNA repair DNA repair-deficiency disorder Mutagens	Student activity assessment

Course unit 10 (10thWEEK):

PATTERNS OF INHERITANCE						
lecture 1 class	practice 1 class					
X-linked inheritance, Y-linked	Monohybrid inheritance Dihybrid inheritance Polygenic inheritance Practice problems- making and analysis of genealogical trees					
lecture 1 class	practice 1 class					
Sex limited inheritance Polygenic and multifactorial inheritance Genetic linkage Maternal inheritance	Student activity assessment					

Course unit 11 (11th week):

PRENATAL DIAGNOSTIC OF CHROMOSOMOPATHY AND GENOPATHY

lecture 1class	practice 1 class		
Prenatal diagnosis- indications Methods for non-invasive and invasive prenatal diagnosis Methods for invasive prenatal diagnosis: amniocentesis, chorionic villus sampling, cordocentesis. Preimplantation genetic diagnosis	Prenatal diagnosis of chromosomopathies and genopathy Methods in molecular genetics: hybridization, electrophoresis, blotting, PCR.		
lecture 1class	practice 1 class		
Prenatal diagnosis of genopathy Basic methods in molecular genetics: nucleic acid isolation, electrophoresis, PCR, hybridization tests	Student activity assesment		

THE MODULE 3: DEVELOPMENTAL GENETICS AND POPULATION GENETICS

Course unit 12 (12th week):

SEX- DETERMINATIONAND DIFFERENTIATION

lecture 1class	practice 1 class
A Barr body- X- hromosom inactivation in females Role of X and Y chromosome sex differentiation Autosomal chromosome genes responsible for gonad differentiation-SOX9, SF1, WT1	X- hromosom inactivation. Mary Lyon hypothesis Solving problem tasks.
lecture 1 class	practice 1 class
Human sexual disorders. Sex reversions. Hermaphroditism.	Student activity assesment

Course unit 13 (13th week):

THE GENETICS OF IMMUNITY

THE GENETICS OF IMMUNITY				
lecture 1class	practice 1 class			
Antigen	Multiple allelism			
Antibody structure and function	Hierarchical relationship between alleles			
Immune response mechanism	Codominant relationship between alleles			
Antibody genes				
HLA system	Blood types			
	ABO blood group system MN blood group system			
	Rh blood group system			
	Solving problem tasks.			
lecture 1class	practice 1 class			
Immunogenetics of blood				
groups:	Student activity assesment			
ABO blood group system	Student activity assesment			
MN blood group system				
Rh blood group system				

Course unit 14 (14th week):

ONCOGENETICS. GENETICS OF AGING

ONCOGENETICS: GENE		
lecture 1class	practice 1 class	
Characteristics of the malignant cell Types of cancers according to the type of cell from which they arise. Carcinogens Chromosomal aberrations in cancer Viral origin of cancer	The genetic basis of cancer – chromosomal aberrations and gene mutations in malignancies.	
Practice 1 class	practice 1 class	
Genetic basis of cancer: protooncogene, oncogene, cancer-suppressor gene p53 gene Aging	Student activity assesment	

Course unit 15 (15th week):

POPULATION GENETICS

lecture 1class	practice 1 class		
Definition and characteristics of human populations. Genetic structure of a population- The Hardy-Weinberg equilibrium principle. Panmixia.	Genetic structure of a population-The Hardy-Weinberg equilibrium principle. Solving problem tasks.		
lecture 1class	practice 1 class		
Factors that disrupt the population's genetic structure: natural selection, mutations, migrations, genetic coincidence Genetic load- consanguineous marriages.	Student activity assesment		

LECTURE SCHEDULE

WEDNESDAY

BLUE HALL (H44)

10:20 - 11:50

SHEDULE OF PRACTICAL CLASSES

FRIDAY					
ROOM (R35) I group 14:30 – 16:00	ROOM (R36) II group 14:30 – 16:00				
III group 16:00 – 17:30	IV group 16:00 – 17:30				

SCHEDULE

module	week	type	title of the lecture	teacher
1	1	L	Chromosomes of eukaryotes. Human karyotype.	Marina Gazdic Jankovic
1	1	P	Chromosomes of eukaryotes. Human karyotype.	Marina Gazdic Jankovic Nikolina Kastratovic
1	2	L	Nuclear and mitochondrial genome	Vladislav Volarevic
1	2	P	Nuclear and mitochondrial genome	Vladislav Volarevic Marina Gazdic Jankovic Nikolina Kastratovic
1	3	L	Genetic recombination	Vladislav Volarevic
1	3	P	Genetic recombination	Vladislav Volarevic Marina Gazdic Jankovic Nikolina Kastratovic
1	4	L	Genetic engineering - recombinant DNA technology	Vladislav Volarevic
1	4	P	Genetic engineering – recombinant DNA technology	Vladislav Volarevic Marina Gazdic Jankovic Nikolina Kastratovic
1	5	L	Epigenetics. Stem cells and their applications.	Marina Gazdic Jankovic
1	5	P	Epigenetics. Stem cells and their applications.	Marina Gazdic Jankovic Nikolina Kastratovic
2	6	L	Numerical chromosome aberrations	Vladislav Volarevic
2	6	P	Numerical chromosome aberrations	Vladislav Volarevic Marina Gazdic Jankovic Nikolina Kastratovic

SCHEDULE

module	week	date	time	place	type	title of the lecture	teacher
2	7				L	Numerical and structural chromosome aberrations	Vladislav Volarevic
2	7				P	Numerical and structural chromosome aberrations	Vladislav Volarevic Marina Gazdic Jankovic Nikolina Kastratovic
2	8				L	Clinical findings in chromosome aberrations	Marina Gazdic Jankovic
2	8				P	Clinical findings in chromosome aberrations	Marina Gazdic Jankovic Nikolina Kastratovic
2	9				L	Gene mutations	Vladislav Volarevic
2	9				P	Gene mutations	Vladislav Volarevic Marina Gazdic Jankovic Nikolina Kastratovic
2	10				L	Patterns of inheritance	Marina Gazdic Jankovic
2	10				P	Patterns of inheritance	Marina Gazdic Jankovic Nikolina Kastratovic
2	11				L	Prenatal diagnostic of chromosomopathy and genopathy	Marina Gazdic Jankovic
2	11				P	Prenatal diagnostic of chromosomopathy and genopathy	Marina Gazdic Jankovic Nikolina Kastratovic

SHEDULE

module	week	date	time	place	type	title of the lecture	teacher
3	12				L	Sex- determination and differentiation	Marina Gazdic Jankovic
3	12				P	Sex- determination and differentiation.	Marina Gazdic Jankovic Nikolina Kastratovic
3	13				L	The genetics of immunity	Marina Gazdic Jankovic
3	13				P	The genetics of immunity	Marina Gazdic Jankovic Nikolina Kastratovic
3	14				L	Oncogenetics	Marina Gazdic Jankovic
3	14				P	Oncogenetics	Marina Gazdic Jankovic Nikolina Kastratovic
3	15				L	Population genetics	Vladislav Volarevic
3	15				P	Population genetics	Vladislav Volarevic Marina Gazdic Jankovic Nikolina Kastratovic