

PHARMACY INTEGRATED ACADEMIC STUDIES THE THIRD YEAR OF STUDIES

\sim		7A T	
$\Box \cap$	urse	Nan	ne:

MEDICINAL CHEMISTRY 2

Medicinal chemistry 7 ECTS. There are 4 hours of active classes per week (2 hours of lectures and 2 hours of work in a small group)

TEACHERS AND ASSOCIATES WHO PERFORM TEACHING:

	Name and surname	Email	
1.	Slobodan Novokmet	slobodan.novokmet@fmn.kg.ac.rs	Full Professor
2.	Isidora Milosavljevic	isidora.milosavljevic@fmn.kg.ac.rs	Associate Professor
3.	Jovana Novakovic	jovana.novakovic@fmn.kg.ac.rs	Assistant Professor
4.	Maja Savic	maja.savic@fmn.kg.ac.rs	Assistant Professor
5.	Nevena Lazarevic	nevena.lazarevic@fmn.kg.ac.rs	Assistant Professor
6.	Jelena Terzic	jelena.terzic@fmn.kg.ac.rs	Junior Teaching Assistant

COURSE STRUCTURE:

Title	Week	Lectures	Small group work	Teachers
Medicinal chemistry 2	15	2	2	Assoc. Prof. Isidora Milosavljevic Ass. Prof. Jovana Novakovic
				Σ 30+30=60

GRADING SYSTEM:

The grade is equivalent to the number of points earned (see tables). Points are earned in two ways:

PRE-EXAM OBLIGATIONS:

2 tests that include material covered in lectures - 50 points.

FINAL EXAM:

Final written exam - 50 points.

	MAXIM	UM POINT	S
Medicinal chemistry 2	Tests	Final written exam	Σ
	2 x 25	50	
Σ	50	50	100

The final grade is formed as follows:

In order to pass the course, the student must obtain a minimum of 51 points.

In order to pass the course, the student must:

- 1. acquires more than 50% of the points (26 points) provided for the pre-exam activity (at least 13 points on the first test and at least 13 points on the second test)
- 2. acquires more than 50% of the points provided for the written final exam

Points	grade
0 - 50	5
51 - 60	6
61 - 70	7
71 - 80	8
81 - 90	9
91 - 100	10

LITERATURE:

TEXTBOOKS	THE AUTHORS	PUBLISHER	THE LIBRARY
Introduction to Medicinal Chemistry, 4th Edition.	Patrick GL (Ed)	Oxford: University Press; 2009	Yes
Essentials of Pharmaceutical Chemistry, 3rd Edition.	Cairns D (Ed)	London, Chicago: Pharmaceutical Press; 2008	Yes
Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 12th Edition.	Beale JM, Block JH (Eds)	Philadelphia: Lippincott Williams & Wilkins; 2011	Yes
Fundamentals of Medicinal Chemistry	Thomas G (Ed)	London, United Kingdom, 2003	Yes

All lectures and material for group work are available on the website of the Faculty of Medical Sciences: www.medf.kg.ac.rs

THE PROGRAM

TEACHING UNIT 1:

HISTAMINE AND ITS IMPORTANCE IN MEDICINAL CHEMISTRY

Lectures - 2 hours		
The role of histamine as a biogenic amine		
involved in various physiological processes,		
including allergic responses, gastric acid		
secretion, and neurotransmission. It should also		
cover how understanding histamine's actions		
has led to the development of histamine		
receptor antagonists, which are crucial in		
treating allergies, peptic ulcers, and other		
conditions, and discuss the impact of histamine-		
related research on drug design and therapeutic		
strategies.		

Analyze the chemical structure of histamine, identify its functional groups, and discuss their ionization at physiological pH. Compare the structures of histamine with selected H1 and H2 receptor antagonists to understand structure-activity relationships and receptor selectivity.

Work in a small group - 2 hours

TEACHING UNIT 2:

HISTAMINE H1 - RECEPTOR ANTAGONISTS

Lectures - 2 hours	Work in a small group - 2 hours
The chemical structures and mechanisms of action of H1-receptor antagonists, their role in blocking histamine at H1 receptors to alleviate symptoms of allergic reactions, their therapeutic uses in treating conditions such as allergic rhinitis, urticaria, and motion sickness, as well as their pharmacokinetic profiles, potential side effects, and interactions with other medications.	Compare the chemical structures of first- and second-generation H1 antagonists, identify functional groups responsible for receptor binding and CNS penetration, and discuss how structural modifications influence side effects such as sedation.

TEACHING UNIT 3:

HISTAMINE H2 - RECEPTOR ANTAGONISTS

Lectures - 2 hours	Work in a small group - 2 hours
The chemical structures and mechanisms of	
action of H2-receptor antagonists, their role in	
competitively inhibiting histamine at H2	Analyze the structural features of selected H2
receptors in the gastric mucosa to reduce gastric	antagonists, identify functional groups
acid secretion, their therapeutic applications in	essential for activity, and compare them to
treating conditions such as peptic ulcers and	histamine to understand how modifications
gastroesophageal reflux disease (GERD), and	improve selectivity and potency.
their pharmacokinetic properties, potential side	
effects, and drug interactions.	

TEACHING UNIT 4:

PROTON PUMP INHIBITORS

Lectures - 2 hours	Work in a small group - 2 hours
This lesson focuses on proton pump inhibitors,	Examine the structure of omeprazole and
a class of drugs that irreversibly inhibit the	related PPIs, identify the functional groups
H ⁺ /K ⁺ -ATPase enzyme in the stomach, thereby	responsible for acid activation and covalent
reducing gastric acid secretion. It includes the	binding, and compare them to H2-receptor
a class of drugs that irreversibly inhibit the H+/K+-ATPase enzyme in the stomach, thereby	related PPIs, identify the functional groups responsible for acid activation and covalent

chemical structures of PPIs, their activation in acidic environments, and the mechanism by which they covalently bind to the enzyme. Common examples include omeprazole, esomeprazole, and pantoprazole.

antagonists in terms of mechanism and duration of action.

TEACHING UNIT 5:

CALCIUM CHANNEL BLOCKERS

Lectures - 2 hours	Work in a small group - 2 hours
The chemical structures and mechanisms of action of calcium channel blockers, their role in inhibiting calcium influx through L-type calcium channels, their therapeutic applications in treating hypertension, angina, and certain arrhythmias, and their pharmacokinetic properties, side effects, and potential drug interactions.	Compare the chemical structures of different CCB classes (e.g. nifedipine, verapamil, diltiazem), identify key functional groups, and relate these to their pharmacological effects and tissue selectivity.

TEACHING UNIT 6:

DIURETICS

Lectures - 2 hours	Lectures - 2 hours
This lesson introduces diuretics and their role	
in managing conditions like hypertension,	Classify diuretics by their site of action in
heart failure, and edema. It explains how	the nephron and identify the structural
different classes of diuretics act on various	features that distinguish each class. They
parts of the nephron to promote sodium and	will also match representative drugs to
water excretion. The main types include loop	their corresponding diuretic group and
diuretics, thiazides, potassium-sparing	mechanism.
diuretics, and carbonic anhydrase inhibitors.	

TEACHING UNIT 7:

DIURETICS

Lectures - 2 hours	Work in a small group - 2 hours
This lesson focuses on the structure-activity	
relationships (SAR) of major diuretic classes	The chemical structures of selected diuretics
and how chemical modifications affect	(e.g. furosemide, hydrochlorothiazide,
potency, selectivity, and duration of action.	spironolactone), identify key functional groups,
Clinical applications, side effects, and drug	and discuss how structural changes influence
interactions are also discussed, highlighting	pharmacological properties and therapeutic use.
differences between the drug classes.	

TEACHING UNIT 8:

ANGIOTENSIN-CONVERTING ENZYME INHIBITORS

hours

Lectures - 2 hours	Lectures - 2 hours
This lesson focuses on ACE inhibitors, a class	Compare the structures of captopril,
of drugs used to treat hypertension, heart	enalapril, and ramipril, identify functional
failure, and diabetic nephropathy. It covers	groups involved in zinc ion binding at the
their mechanism of action—blocking the	active site of ACE, and analyze how
conversion of angiotensin I to angiotensin II—	structural modifications affect
along with chemical structure, structure-	bioavailability, potency, and duration of
activity relationships (SAR), and differences	action.
between active drugs and prodrugs	

TEACHING UNIT 9:

AT1 RECEPTOR ANTAGONISTS

Lectures - 2 hours	Work in a small group - 2 hours
The chemical properties and structures of AT1	
receptor antagonists (also known as angiotensin II receptor blockers or ARBs), their mechanisms of action in blocking the angiotensin II type 1 receptor, their therapeutic uses in treating hypertension and heart failure, and their pharmacokinetic and pharmacodynamic profiles	Analyze the chemical structures of selected ARBs (e.g. losartan, valsartan, candesartan), identify key pharmacophores responsible for receptor binding, and discuss how structural features influence oral bioavailability, receptor selectivity, and duration of action.

TEACHING UNIT 10:

HYDROXYMETHYL GLUTARYL COENZYME A REDUCTASE INHIBITORS

Lectures - 2 hours	Lectures - 2 hours
The mechanism of action of HMG-CoA	Compare the structures of different statins
reductase inhibitors (statins), their chemical	(e.g. lovastatin, simvastatin, atorvastatin),
structures, their role in cholesterol biosynthesis	identify the pharmacophore responsible for
inhibition, and their therapeutic applications in	enzyme inhibition, and analyze how
managing hyperlipidemia and cardiovascular	chemical modifications affect potency,
diseases, as well as potential side effects and	lipophilicity, and metabolism.
drug interactions	

TEACHING UNIT 11:

AGONISTS AND ANTAGONISTS OF MUSCARINIC RECEPTORS Lectures - 2 hours Work in a small group - 2 hours

Lectures - 2 nours	work in a small group - 2 nours
The pharmacology of muscarinic receptor agonists and antagonists. It explains how agonists activate muscarinic receptors to	Analyze their chemical structures, and discuss
produce physiological effects, while antagonists block these receptors to inhibit their action. The lesson also discusses the structural basis of ligand-receptor interactions, receptor subtypes, and clinical applications of these drugs.	their therapeutic uses and side effects. Case studies may involve selecting appropriate drugs for conditions like asthma, bradycardia, or overactive bladder.

TEACHING UNIT 12:

AGONISTS AND ANTAGONISTS OF ADRENERGIC RECEPTORS

Lectures - 2 hours	Work in a small group - 2 hours
The pharmacology of adrenergic receptor agonists	
and antagonists. It covers how agonists stimulate	Classifying drugs as α or β
adrenergic receptors (α and β subtypes) to produce	agonists/antagonists based on their structure
physiological responses such as vasoconstriction,	and function.
increased heart rate, or bronchodilation, while	Discussing the therapeutic uses and side effects
antagonists block these effects. The lesson also	of common adrenergic drugs.
reviews receptor subtypes, ligand selectivity, and	Case studies involving drug selection for
clinical applications of these drugs in conditions	specific clinical scenarios.
like hypertension, asthma, and cardiac diseases.	

TEACHING UNIT 13:

AGONISTS AND ANTAGONISTS OF ADRENERGIC RECEPTORS

Lectures - 2 hours	Work in a small group - 2 hours		
The chemical structures and pharmacological profiles of adrenergic receptor agonists and antagonists, their interactions with adrenergic receptors, the impact of these interactions on receptor function and downstream signaling pathways, and their implications for drug design and therapeutic applications.	Classifying drugs as α or β agonists/antagonists based on their structure and function. Discussing the therapeutic uses and side effects of common adrenergic drugs. Case studies involving drug selection for specific clinical scenarios.		

TEACHING UNIT 14:

ANTIPSYCHOTICS

Lectures - 2 hours	Work in a small group - 2 hours		
This lesson introduces antipsychotic drugs,	Identify and draw the chemical structures of		
which are primarily used to treat psychiatric	typical and atypical antipsychotic drugs.		
disorders such as schizophrenia and bipolar	Analyze the relationship between chemical		
disorder. It covers the mechanisms of action,	structure and receptor binding affinity.		
focusing on dopamine receptor antagonism, as	Discuss how functional groups in		
well as interactions with other neurotransmitter	antipsychotic molecules influence their		
systems. The lesson also discusses the	pharmacokinetic properties (e.g.,		
classification into typical (first-generation) and	lipophilicity, solubility).		
atypical (second-generation) antipsychotics,	Compare chemical classes of antipsychotics		
their therapeutic uses, side effects, and	and relate their structural differences to		
considerations in clinical practice	their pharmacological activity.		

TEACHING UNIT 15:

RECAPITULATION

Lectures - 2 hours	Work in a small group - 2 hours
A comprehensive review of key concepts covered throughout the course, reinforce critical learning points, clarify any misunderstandings, and integrate knowledge across different topics to ensure a thorough understanding of the subject matter.	Quiz covering major topics from the course. Group discussions and problem-solving sessions to integrate knowledge. Case studies applying multiple concepts to drug design and metabolism.

LECTURE SCHEDULE						
Week	Date	Time	Place	Type	Teaching Unit 1	Teacher
				L	HISTAMINE AND ITS IMPORTANCE IN MEDICINAL CHEMISTRY	Assoc. Prof. Isidora Milosavljevic
1				WSG	HISTAMINE AND ITS IMPORTANCE IN MEDICINAL CHEMISTRY	Ass. Prof. Jovana Novakovic Assoc. Prof. Isidora Milosavljevic
				L	HISTAMINE H1-RECEPTOR ANTAGONISTS	Ass. Prof. Jovana Novakovic
2				WSG	HISTAMINE H1-RECEPTOR ANTAGONISTS	Ass. Prof. Jovana Novakovic Assoc. Prof. Isidora Milosavljevic
				L	HISTAMINE H2-RECEPTOR ANTAGONISTS	Ass. Prof. Jovana Novakovic
3				WSG	HISTAMINE H2-RECEPTOR ANTAGONISTS	Assoc. Prof. Isidora Milosavljevic Ass. Prof. Jovana Novakovic
				L	PROTON PUMP INHIBITORS	Ass. Prof. Jovana Novakovic
4				WSG	PROTON PUMP INHIBITORS	Assoc. Prof. Isidora Milosavljevic Ass. Prof. Jovana Novakovic
				L	CALCIUM ANTAGONISTS	Ass. Prof. Jovana Novakovic
5				WSG	CALCIUM ANTAGONISTS	Ass. Prof. Jovana Novakovic Assoc. Prof. Isidora Milosavljevic
6				L	DIURETICS	Assoc. Prof. Isidora Milosavljevic

LECTURE SCHEDULE							
Week	Date	Time	Place	Type	Teaching Unit 1	Teacher	
				WSG	DIURETICS	Ass. Prof. Jovana Novakovic Assoc. Prof. Isidora Milosavljevic	
				DIURETICS	Assoc. Prof. Isidora Milosavljevic		
7				WSG	DIURETICS	Assoc. Prof. Isidora Milosavljevic Ass. Prof. Jovana Novakovic	
	The first test						
				L	ANGIOTENSIN-CONVERTING ENZYME INHIBITORS	Ass. Prof. Jovana Novakovic	
8				WSG	ANGIOTENSIN-CONVERTING ENZYME INHIBITORS	Ass. Prof. Jovana Novakovic Assoc. Prof. Isidora Milosavljevic	
				L	AT1 RECEPTOR ANTAGONISTS	Ass. Prof. Nevena Lazarevic	
9				WSG	AT1 RECEPTOR ANTAGONISTS	Ass. Prof. Nevena Lazarevic Ass. Prof. Jovana Novakovic Assoc. Prof. Isidora Milosavljevic	
10				L	HYDROXYMETHYL GLUTARYL COENZYME A REDUCTASE	Assoc. Prof. Isidora Milosavljevic	

LECTURE SCHEDULE						
Week	Date	Time	Place	Type	Teaching Unit 1	Teacher
				WSG	HYDROXYMETHYL GLUTARYL COENZYME A REDUCTASE	Assoc. Prof. Isidora Milosavljevic Ass. Prof. Jovana Novakovic
				L	AGONISTS AND ANTAGONISTS OF MUSCARINIC RECEPTORS	Ass. Prof. Nevena Lazarevic
11				WSG	AGONISTS AND ANTAGONISTS OF MUSCARINIC RECEPTORS	Ass. Prof. Nevena Lazarevic Assoc. Prof. Isidora Milosavljevic Ass. Prof. Jovana Novakovic
				L	AGONISTS AND ANTAGONISTS OF ADRENERGIC	Assoc. Prof. Isidora Milosavljevic
12				WSG	AGONISTS AND ANTAGONISTS OF ADRENERGIC	Assoc. Prof. Isidora Milosavljevic Ass. Prof. Jovana Novakovic
				L	AGONISTS AND ANTAGONISTS OF ADRENERGIC	Assoc. Prof. Isidora Milosavljevic
13				WSG	AGONISTS AND ANTAGONISTS OF ADRENERGIC	Ass. Prof. Jovana Novakovic Assoc. Prof. Isidora Milosavljevic
				L	ANTIPSYCHOTICS	Assoc. Prof. Isidora Milosavljevic
14				WSG	ANTIPSYCHOTICS	Ass. Prof. Jovana Novakovic Assoc. Prof. Isidora Milosavljevic

LECTURE SCHEDULE						
Week	Date	Time	Place	Type	Teaching Unit 1	Teacher
The second test						
15				L	RECAPITULATION	Ass. Prof. Jovana Novakovic
				WSG	RECAPITULATION	Assoc. Prof. Isidora Milosavljevic Ass. Prof. Jovana Novakovic
Final written exam						