

PHARMACY INTEGRATED ACADEMIC STUDIES THE SECOND YEAR OF STUDIES

Course N	Jame:
----------	-------

MEDICINAL CHEMISTRY 1

Medicinal chemistry 7 ECTS. There are 4 hours of active classes per week (2 hours of lectures and 2 hours of work in a small group)

TEACHERS AND ASSOCIATES WHO PERFORM TEACHING:

	Name and surname	Email	
1.	Slobodan Novokmet	slobodan.novokmet@fmn.kg.ac.rs	Full Professor
2.	Isidora Milosavljevic	isidora.milosavljevic@fmn.kg.ac.rs	Associate Professor
3.	Jovana Novakovic	jovana.novakovic@fmn.kg.ac.rs	Assistant Professor
4.	Maja Savic	maja.savic@fmn.kg.ac.rs	Assistant Professor
5.	Nevena Lazarevic	nevena.lazarevic@fmn.kg.ac.rs	Assistant Professor
6.	Jelena Terzic	jelena.terzic@fmn.kg.ac.rs	Junior Teaching Assistant

COURSE STRUCTURE:

Title	Week	Lectures	Small group work	Teachers
Medicinal chemistry 1	15	2	2	Assoc. Prof. Isidora Milosavljevic Ass. Prof. Jovana Novakovic
				Σ 30+30=60

GRADING SYSTEM:

The grade is equivalent to the number of points earned (see tables). Points are earned in two ways:

PRE-EXAM OBLIGATIONS:

Activity during class - maximum 20 points 2 tests that include material covered in lectures 30 points

FINAL EXAM:

Final written exam - maximum 50 points.

		MAXIM	UM POINT	S
Medicinal chemistry 1	Activity during class	Test	Final written exam	Σ
	4 x 5	30	50	
Σ	20	30	50	100

The final grade is formed as follows:

In order to pass the course, the student must obtain a minimum of 51 points.

In order to pass the course, the student must:

- 1. acquires more than 50% of the points (25.5 points) provided for the pre-exam activity (Activity during class and Test)
- 2. acquires more than 50% of the points (25.5 points) provided for the written final exam

Points	grade
0 - 50	5
51 - 60	6
61 - 70	7
71 - 80	8
81 - 90	9
91 - 100	10

LITERATURE:

TEXTBOOKS	THE AUTHORS	PUBLISHER	THE LIBRARY
Introduction to Medicinal Chemistry, 4th Edition.	Patrick GL (Ed)	Oxford: University Press; 2009	Yes
Essentials of Pharmaceutical Chemistry, 3rd Edition.	Cairns D (Ed)	London, Chicago: Pharmaceutical Press; 2008	Yes
Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 12th Edition.	Beale JM, Block JH (Eds)	Philadelphia: Lippincott Williams & Wilkins; 2011	Yes
Fundamentals of Medicinal Chemistry	Thomas G (Ed)	London, United Kingdom, 2003	Yes

All lectures and material for group work are available on the website of the Faculty of Medical Sciences: www.medf.kg.ac.rs

THE PROGRAM

TEACHING UNIT 1:

INTRODUCTION TO MEDICINAL CHEMISTRY

Lectures - 2 hours	Work in a small group - 2 hours
This lesson provides an overview of medicinal chemistry as a discipline at the intersection of chemistry, biology, and pharmacology. It introduces basic concepts such as the role of drug molecules, their interaction with biological targets, and the importance of chemical structure in drug action and design.	Discussion: What is medicinal chemistry and how does it differ from pharmacology? Analyzing the structure of a simple drug and identifying key functional groups. Matching drug names with their therapeutic classes and general mechanisms of action.

TEACHING UNIT 2:

FUNCTIONAL GROUPS

Lectures - 2 hours	Work in a small group - 2 hours
This lesson introduces the basic functional groups commonly found in drug molecules. Understanding functional groups is essential for predicting chemical reactivity, solubility, acid-base properties, and the interaction of drugs with biological targets.	Identifying functional groups in the structures of common drugs. Classifying functional groups as acidic, basic, or neutral. Drawing and naming simple organic compounds containing key functional groups (e.g. alcohols, amines, carboxylic acids, esters, amides).

TEACHING UNIT 3:

PHYSICO-CHEMICAL PROPERTIES OF DRUGS: ACIDITY AND BASICITY OF FUNCTIONAL GROUPS

Lectures - 2 hours	Work in a small group - 2 hours
This lesson focuses on the acidic and basic behavior of functional groups commonly found in drug molecules. Understanding the acid-base properties is essential for predicting drug ionization, solubility, absorption, and interaction with biological targets at physiological pH.	Identifying acidic and basic functional groups in drug structures. Estimating pKa values and predicting ionization at physiological pH. Comparing drug molecules based on their acid-base properties and discussing their influence on pharmacokinetics.

TEACHING UNIT 4:

PHYSICO-CHEMICAL PROPERTIES OF DRUGS: IONIZATION

Lectures - 2 hours	Work in a small group - 2 hours
This lesson covers the concept of ionization of drug molecules, explaining how drugs can exist in ionized or non-ionized forms depending on the pH of the environment and their pKa values. Ionization influences drug solubility, absorption, distribution, and interaction with targets.	Calculating the degree of ionization of acidic and basic drugs at different pH values using the Henderson-Hasselbalch equation. Predicting the ionization state of given drugs in various body compartments (stomach, blood, intestine). Discussing how ionization affects drug absorption and distribution.

TEACHING UNIT 5:

PHYSICO-CHEMICAL PROPERTIES OF DRUGS: LIPOPHILICITY

Lectures - 2 hours	Work in a small group - 2 hours
This lesson introduces lipophilicity as a key	
property that influences a drug's ability to cross	Calculating or interpreting log P and log D
biological membranes. Lipophilicity affects	values for different drug molecules.
absorption, distribution, metabolism, and	Comparing the lipophilicity of drug pairs and
excretion. Concepts such as partition	predicting their membrane permeability.
coefficient (log P) and distribution coefficient	Discussing how lipophilicity impacts drug
(log D) are explained, along with their	pharmacokinetics and pharmacodynamics.
relevance in drug design.	

TEACHING UNIT 6:

PHYSICO-CHEMICAL PROPERTIES OF DRUGS: SOLUBILITY

Lectures - 2 hours	Work in a small group - 2 hours
This lesson covers the importance of solubility in drug absorption and bioavailability. It explains the factors affecting solubility, such as temperature, pH, and the chemical nature of the drug, and discusses how solubility influences	Classifying drugs based on their water solubility. Predicting the effect of pH changes on solubility for acidic and basic drugs. Designing simple experiments to compare solubility of different compounds in water and
drug formulation and delivery.	organic solvents.

TEACHING UNIT 7:

BIOTRANSFORMATION OF DRUG MOLECULES: BIOACTIVATION AND PRODRUGS

Lectures - 2 hours	Work in a small group - 2 hours
This lesson introduces the concept of bioactivation,	
where drugs are metabolically converted into active	Analyzing metabolic pathways of selected
forms, and prodrugs, which are administered in an	prodrugs and identifying enzymes involved in
inactive form and require metabolic transformation	their activation.
to exert their therapeutic effect. The mechanisms,	Case studies: comparing the pharmacokinetics
advantages, and examples of prodrugs are	of a prodrug and its active metabolite.
discussed, emphasizing their role in improving	Discussing clinical scenarios where prodrugs
drug properties such as solubility, stability, and	offer therapeutic advantages.
targeted delivery.	

TEACHING UNIT 8:

BIOTRANSFORMATION OF DRUG MOLECULES: BIO-OXIDATION Lectures - 2 hours Work in a small group - 2 hours

Lectures - 2 nours	work in a small group - 2 nours
This lesson focuses on Phase I	
biotransformation reactions, specifically bio- oxidation processes where enzymes like	Identifying common oxidative reactions such as
1	hydroxylation, N-oxidation, and dealkylation.
cytochrome P450 oxidases introduce or expose	Mapping metabolic pathways of drugs
functional groups in drug molecules. These	undergoing bio-oxidation.
oxidative reactions often prepare drugs for	Predicting sites of oxidation on given drug
further metabolism or excretion by increasing	structures.
their polarity.	

TEACHING UNIT 9:

BIOTRANSFORMATION OF DRUG MOLECULES: BIOREDUCTION, BIOHYDROLYSIS AND BIOHYDRATION

DIGITIDATE TO DIGITIDATION						
Lectures - 2 hours	Work in a small group - 2 hours					
This lesson covers Phase I metabolic reactions						
including bioreduction, biohydrolysis, and						
biohydration. Bioreduction involves the enzymatic	Identifying drug structures susceptible to					
reduction of drug molecules, often under low	bioreduction, hydrolysis, or hydration.					
oxygen conditions. Biohydrolysis refers to the	Analyzing enzyme types responsible for these					
enzymatic cleavage of ester and amide bonds, while	reactions.					
biohydration involves the enzymatic addition of	Case studies on drugs metabolized through					
water to double bonds. These reactions modify drug	these pathways.					
molecules to alter their activity or prepare them for						
Phase II conjugation.						

TEACHING UNIT 10:

PHASE II DRUG BIOTRANSFORMATION – CONJUGATION REACTIONS

Lectures - 2 hours	Work in a small group - 2 hours
This lesson introduces Phase II biotransformation, where drug molecules or their Phase I metabolites undergo conjugation with endogenous substrates such as glucuronic acid, sulfate, acetyl groups, methyl groups, amino acids, or glutathione. These reactions increase drug water solubility, facilitating elimination.	Identifying functional groups suitable for conjugation. Classifying examples of drugs according to the type of conjugation they undergo. Diagram completion: match conjugation reactions with enzymes and co-substrates.

TEACHING UNIT 11:

ENZYMES AND CO-SUBSTRATES IN CONJUGATION REACTIONS

Lectures - 2 hours	Work in a small group - 2 hours
This lesson focuses on the main enzymes involved	Matching enzymes with their conjugation
in Phase II conjugation reactions, such as UGTs,	reactions and co-substrates.
SULTs, NATs, and methyltransferases. It explains	Predicting which conjugation pathway a drug
the role of co-substrates like UDP-glucuronic acid,	will follow based on its structure.
PAPS, acetyl-CoA, and SAM in forming water-	Discussion: why certain drugs undergo
soluble drug metabolites.	glucuronidation vs. sulfation.

TEACHING UNIT 12:

MOLECULAR-CHEMICAL BASIS OF THE MECHANISM OF DRUG ACTION: RECEPTORS

Lectures - 2 hours	Work in a small group - 2 hours
This lesson explores how drugs exert their effects	
by interacting with specific biological receptors. It	Identifying different receptor types and their
covers receptor types, binding sites, and the	ligands.
molecular interactions involved, such as hydrogen	Analyzing drug-receptor binding interactions
bonding, ionic interactions, and hydrophobic	using molecular models or diagrams.
forces. The concept of agonists, antagonists, and	Comparing agonists and antagonists based on
receptor selectivity is introduced to explain drug	their chemical structures and effects.
efficacy and potency.	

TEACHING UNIT 13:

MOLECULAR-CHEMICAL BASIS OF THE MECHANISM OF DRUG ACTION: ENZYMES, NUCLEIC ACIDS

Lectures - 2 hours	Lectures - 2 hours
This lesson focuses on how drugs interact with	Classifying drugs based on their mechanism
enzymes and nucleic acids to produce therapeutic	of enzyme inhibition.
effects. It explains enzyme inhibition	Exploring examples of nucleic acid-targeting
(competitive, non-competitive) and activation, as	drugs and their modes of action.
well as drug interactions with DNA and RNA that	Analyzing molecular structures to predict
affect replication and transcription. Key molecular	potential enzyme or nucleic acid interactions.
interactions and examples of drugs targeting	
enzymes or nucleic acids are discussed.	

TEACHING UNIT 14:

NATURAL REMEDIES

Lectures - 2 hours	Work in a small group - 2 hours
This lesson introduces natural remedies	
derived from plants, animals, and minerals	Identifying active compounds in common
used for therapeutic purposes. It covers the	medicinal plants.
chemical constituents responsible for	Discussing advantages and limitations of
biological activity, their mechanisms of action,	natural remedies compared to synthetic
and the challenges in standardization and	drugs.
quality control. The role of natural remedies in	Case studies analyzing the pharmacological
modern medicine and their integration with	effects of selected herbal extracts.
conventional therapies is also discussed.	

TEACHING UNIT 15:

RECAPITULATION

Lectures - 2 hours	Work in a small group - 2 hours
This lesson serves as a comprehensive review of the key concepts covered throughout the course. It summarizes fundamental principles of medicinal chemistry, drug biotransformation, mechanisms of drug action, and physico-chemical properties of drugs, reinforcing student understanding and preparing them for exams	Quiz covering major topics from the course. Group discussions and problem-solving sessions to integrate knowledge. Case studies applying multiple concepts to drug design and metabolism.

LECTURE SCHEDULE						
Week	Date	Time	Place	Type	Teaching Unit 1	Teacher
				L	Introduction to Medicinal Chemistry	Ass. Prof. Jovana Novakovic
1				WSG	Introduction to Medicinal Chemistry	Ass. Prof. Jovana Novakovic Assoc. Prof. Isidora Milosavljevic
				L	Functional groups	Ass. Prof. Jovana Novakovic
2				WSG	Functional groups	Ass. Prof. Jovana Novakovic Assoc. Prof. Isidora Milosavljevic
				L	Physico-chemical properties of drugs: acidity and basicity of functional groups.	Assoc. Prof. Isidora Milosavljevic
3				WSG	Physico-chemical properties of drugs: acidity and basicity of functional groups.	Assoc. Prof. Isidora Milosavljevic Ass. Prof. Jovana Novakovic
				L	Physico-chemical properties of drugs: ionization.	Assoc. Prof. Isidora Milosavljevic
4				WSG	Physico-chemical properties of drugs: ionization.	Assoc. Prof. Isidora Milosavljevic Ass. Prof. Jovana Novakovic
				L	Physico-chemical properties of drugs: lipophilicity.	Ass. Prof. Jovana Novakovic
5				WSG	Physico-chemical properties of drugs: lipophilicity.	Ass. Prof. Jovana Novakovic Assoc. Prof. Isidora Milosavljevic
6				L	Physico-chemical properties of drugs: solubility.	Ass. Prof. Jovana Novakovic

LECTURE SCHEDULE						
Week	Date	Time	Place	Type	Teaching Unit 1	Teacher
				WSG	Physico-chemical properties of drugs: solubility.	Ass. Prof. Jovana Novakovic Assoc. Prof. Isidora Milosavljevic
				L	Biotransformation of drug molecules	Assoc. Prof. Isidora Milosavljevic
7				WSG	Biotransformation of drug molecules: biooxidation and prodrugs	Assoc. Prof. Isidora Milosavljevic Ass. Prof. Jovana Novakovic
				L	Biotransformation of drug molecules: biooxidation and prodrugs	Assoc. Prof. Isidora Milosavljevic
8				WSG	Biotransformation of drug molecules: biooxidation.	Assoc. Prof. Isidora Milosavljevic Ass. Prof. Jovana Novakovic
	Test					
				L	Biotransformation of drug molecules: bioreduction, biohydrolysis and biohydration.	Ass. Prof. Jovana Novakovic
9				WSG	Biotransformation of drug molecules: bioreduction, biohydrolysis and biohydration.	Ass. Prof. Jovana Novakovic Assoc. Prof. Isidora Milosavljevic
10				L	Phase II Drug Biotransformation – Conjugation Reactions	Ass. Prof. Jovana Novakovic

LECTURE SCHEDULE						
Week	Date	Time	Place	Type	Teaching Unit 1	Teacher
				WSG	Phase II Drug Biotransformation – Conjugation Reactions	Ass. Prof. Jovana Novakovic Assoc. Prof. Isidora Milosavljevic
				L	Enzymes and Co-substrates in Conjugation Reactions	Assoc. Prof. Isidora Milosavljevic
11				WSG	Enzymes and Co-substrates in Conjugation Reactions	Assoc. Prof. Isidora Milosavljevic Ass. Prof. Jovana Novakovic
				L	Molecular-chemical basis of the mechanism of drug action: receptors	Ass. Prof. Nevena Lazarevic
12				WSG	Molecular-chemical basis of the mechanism of drug action: receptors	Assoc. Prof. Isidora Milosavljevic Ass. Prof. Jovana Novakovic Ass. Prof. Nevena Lazarevic
				L	Molecular-chemical basis of the mechanism of drug action: enzymes, nucleic acids	Assoc. Prof. Isidora Milosavljevic
13				WSG	Molecular-chemical basis of the mechanism of drug action: enzymes, nucleic acids	Ass. Prof. Jovana Novakovic Assoc. Prof. Isidora Milosavljevic
				L	Natural remedies	Ass. Prof. Nevena Lazarevic
14				WSG	Natural remedies	Ass. Prof. Jovana Novakovic Assoc. Prof. Isidora Milosavljevic Ass. Prof. Nevena Lazarevic

LECTURE SCHEDULE						
Week	Date	Time	Place	Type	Teaching Unit 1	Teacher
				L	Recapitulation	Assoc. Prof. Isidora Milosavljevic
15				WSG	Recapitulation	Assoc. Prof. Isidora Milosavljevic Ass. Prof. Jovana Novakovic
				Final written exam		